Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Immunol ; 13: 894770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711446

RESUMO

Background: Plasmodium falciparum variant surface antigens (VSAs) contribute to malaria pathogenesis by mediating cytoadhesion of infected red blood cells to the microvasculature endothelium. In this study, we investigated the association between anti-VSA antibodies and clinical outcome in a controlled human malaria infection (CHMI) study. Method: We used flow cytometry and ELISA to measure levels of IgG antibodies to VSAs of five heterologous and one homologous P. falciparum parasite isolates, and to two PfEMP1 DBLß domains in blood samples collected a day before the challenge and 14 days after infection. We also measured the ability of an individual's plasma to inhibit the interaction between PfEMP1 and ICAM1 using competition ELISA. We then assessed the association between the antibody levels, function, and CHMI defined clinical outcome during a 21-day follow-up period post infection using Cox proportional hazards regression. Results: Antibody levels to the individual isolate VSAs, or to two ICAM1-binding DBLß domains of PfEMP1, were not associated with a significantly reduced risk of developing parasitemia or of meeting treatment criteria after the challenge after adjusting for exposure. However, anti-VSA antibody breadth (i.e., cumulative response to all the isolates) was a significant predictor of reduced risk of requiring treatment [HR 0.23 (0.10-0.50) p= 0.0002]. Conclusion: The breadth of IgG antibodies to VSAs, but not to individual isolate VSAs, is associated with protection in CHMI.


Assuntos
Malária Falciparum , Malária , Anticorpos Antiprotozoários , Antígenos de Protozoários , Antígenos de Superfície , Humanos , Imunoglobulina G , Plasmodium falciparum
2.
Open Forum Infect Dis ; 8(12): ofab527, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34909438

RESUMO

BACKGROUND: Sickle cell trait (HbAS) protects against severe Plasmodium falciparum malaria but not against placental malaria (PM). In this study, P falciparum erythrocyte membrane protein (PfEMP1)-specific antibodies were measured in HbAA and HbAS Beninese pregnant women as a proxy of exposure to specific PfEMP1 variants. METHODS: Plasma samples collected at delivery from 338 HbAA and 63 HbAS women were used to measure immunoglobulin (Ig)G levels to 6 recombinant PfEMP1 proteins and 3 corresponding native proteins expressed on the infected erythrocyte (IE) surface. Immunoglobulin G-mediated inhibition of VAR2CSA+ IEs adhesion to chondroitin sulfate A (CSA) was also tested. RESULTS: Levels of PfEMP1-specific IgG were similar in the 2 groups, except for native IT4VAR09 on IEs, where IgG levels were significantly higher in HbAS women. Adjusted odds ratios for women with positive IgG to HB3VAR06 and PFD1235w suggest a lower risk of infection with these virulent variants among HbAS individuals. The percentage of IEs binding to CSA did not differ between HbAA and HbAS women, but it correlated positively with levels of anti-VAR2CSA and parity. Women with PM had lower levels of anti-VAR2CSA-specific IgG and lower IgG-mediated inhibition of IE adhesion to CSA. CONCLUSIONS: The findings support similar malaria exposure in HbAA and HbAS women and a lack of HbAS-dependent protection against placental infection among pregnant women.

3.
Front Immunol ; 12: 626308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854501

RESUMO

We have previously shown that conformational change in the ß2-integrin is a very early activation marker that can be detected with fluorescent multimers of its ligand intercellular adhesion molecule (ICAM)-1 for rapid assessment of antigen-specific CD8+ T cells. In this study, we describe a modified protocol of this assay for sensitive detection of functional antigen-specific CD4+ T cells using a monoclonal antibody (clone m24 Ab) specific for the open, high-affinity conformation of the ß2-integrin. The kinetics of ß2-integrin activation was different on CD4+ and CD8+ T cells (several hours vs. few minutes, respectively); however, m24 Ab readily stained both cell types 4-6 h after antigen stimulation. With this protocol, we were able to monitor ex vivo effector and memory CD4+ and CD8+ T cells specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cytomegalovirus (CMV), Epstein-Barr virus (EBV), and hepatitis B virus (HBV) in whole blood or cryopreserved peripheral blood mononuclear cells (PBMCs) of infected or vaccinated individuals. By costaining ß2-integrin with m24 and CD154 Abs, we assessed extremely low frequencies of polyfunctional CD4+ T cell responses. The novel assay used in this study allows very sensitive and simultaneous screening of both CD4+ and CD8+ T cell reactivities, with versatile applicability in clinical and vaccination studies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Integrinas/metabolismo , Adulto , Idoso , Sequência de Aminoácidos , Sítios de Ligação , COVID-19/genética , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/virologia , Proteínas de Transporte/química , Citocinas/metabolismo , Citomegalovirus/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Feminino , Antígenos HLA/química , Antígenos HLA/imunologia , Interações Hospedeiro-Patógeno/genética , Humanos , Imuno-Histoquímica , Imunofenotipagem , Integrinas/genética , Molécula 1 de Adesão Intercelular/química , Molécula 1 de Adesão Intercelular/metabolismo , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Multimerização Proteica , SARS-CoV-2/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
4.
J Exp Med ; 218(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33492344

RESUMO

Cerebral malaria (CM) is caused by the binding of Plasmodium falciparum-infected erythrocytes (IEs) to the brain microvasculature, leading to inflammation, vessel occlusion, and cerebral swelling. We have previously linked dual intercellular adhesion molecule-1 (ICAM-1)- and endothelial protein C receptor (EPCR)-binding P. falciparum parasites to these symptoms, but the mechanism driving the pathogenesis has not been identified. Here, we used a 3D spheroid model of the blood-brain barrier (BBB) to determine unexpected new features of IEs expressing the dual-receptor binding PfEMP1 parasite proteins. Analysis of multiple parasite lines shows that IEs are taken up by brain endothelial cells in an ICAM-1-dependent manner, resulting in breakdown of the BBB and swelling of the endothelial cells. Via ex vivo analysis of postmortem tissue samples from CM patients, we confirmed the presence of parasites within brain endothelial cells. Importantly, this discovery points to parasite ingress into the brain endothelium as a contributing factor to the pathology of human CM.


Assuntos
Barreira Hematoencefálica/patologia , Malária Cerebral/patologia , Malária Cerebral/parasitologia , Proteínas de Protozoários/genética , Adulto , Animais , Endocitose , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Receptor de Proteína C Endotelial/metabolismo , Eritrócitos/parasitologia , Eritrócitos/patologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Microvilosidades/metabolismo , Modelos Biológicos , Simulação de Acoplamento Molecular , Parasitos/metabolismo , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/ultraestrutura , Ligação Proteica , Isoformas de Proteínas/metabolismo , Ratos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
5.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308082

RESUMO

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is an important malaria virulence factor. The protein family can be divided into clinically relevant subfamilies. ICAM-1-binding group A PfEMP1 proteins also bind endothelial protein C receptor and have been associated with cerebral malaria in children. IgG to these PfEMP1 proteins is acquired later in life than that to group A PfEMP1 not binding ICAM-1. The kinetics of acquisition of IgG to group B and C PfEMP1 proteins binding ICAM-1 is unclear and was studied here. Gene sequences encoding group B and C PfEMP1 with DBLß domains known to bind ICAM-1 were used to identify additional binders. Levels of IgG specific for DBLß domains from group A, B, and C PfEMP1 binding or not binding ICAM-1 were measured in plasma from Ghanaian children with or without malaria. Seven new ICAM-1-binding DBLß domains from group B and C PfEMP1 were identified. Healthy children had higher levels of IgG specific for ICAM-1-binding DBLß domains from group A than from groups B and C. However, the opposite pattern was found in children with malaria, particularly among young patients. Acquisition of IgG specific for DBLß domains binding ICAM-1 differs between PfEMP1 groups.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Imunoglobulina G/biossíntese , Molécula 1 de Adesão Intercelular/genética , Malária Cerebral/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Criança , Pré-Escolar , Eritrócitos/imunologia , Eritrócitos/parasitologia , Feminino , Expressão Gênica , Gana , Humanos , Lactente , Molécula 1 de Adesão Intercelular/imunologia , Malária Cerebral/genética , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Malária Falciparum/genética , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Masculino , Plasmodium falciparum/patogenicidade , Polimorfismo Genético , Ligação Proteica , Domínios Proteicos , Proteínas de Protozoários/classificação , Proteínas de Protozoários/imunologia , Estações do Ano , Índice de Gravidade de Doença
6.
J Exp Med ; 216(3): 517-526, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30755455

RESUMO

Efficient T cell responses require the firm adhesion of T cells to their targets, e.g., virus-infected cells, which depends on T cell receptor (TCR)-mediated activation of ß2-integrins. Gαs-coupled receptor agonists are known to have immunosuppressive effects, but their impact on TCR-mediated integrin activation is unknown. Using multimers of peptide major histocompatibility complex molecules (pMHC) and of ICAM-1-the ligand of ß2-integrins-we show that the Gαs-coupled receptor agonists isoproterenol, epinephrine, norepinephrine, prostaglandin (PG) E2, PGD2, and adenosine strongly inhibit integrin activation on human CMV- and EBV-specific CD8+ T cells in a dose-dependent manner. In contrast, sleep, a natural condition of low levels of Gαs-coupled receptor agonists, up-regulates integrin activation compared with nocturnal wakefulness, a mechanism possibly underlying some of the immune-supportive effects of sleep. The findings are also relevant for several pathologies associated with increased levels of Gαs-coupled receptor agonists (e.g., tumor growth, malaria, hypoxia, stress, and sleep disturbances).


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Sono/fisiologia , Adenosina/metabolismo , Adulto , Antígenos CD18/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/virologia , Catecolaminas/metabolismo , Infecções por Citomegalovirus/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Epinefrina/farmacologia , Infecções por Vírus Epstein-Barr/metabolismo , Feminino , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Ativação Linfocitária , Masculino , Transdução de Sinais
7.
PLoS One ; 13(10): e0204177, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30300360

RESUMO

The lack of suitable animal models for the study of cytoadhesion of P. falciparum-infected erythrocytes (IEs) has necessitated in vitro studies employing a range of cell lines of either human tumour origin (e.g., BeWo and C32 cells) or non-human origin (e.g., CHO cells). Of the human cells available, many were isolated from adults, or derived from a pool of donors (e.g., HBEC-5i). Here we demonstrate, for the first time, the successful isolation of blood outgrowth endothelial cells (BOECs) from frozen stabilates of peripheral blood mononuclear cells obtained from small-volume peripheral blood samples from paediatric malaria patients. BOECs are a sub-population of human endothelial cells, found within the peripheral blood. We demonstrate that these cells express receptors such as Intercellular Adhesion Molecule 1 (ICAM-1/CD54), Endothelial Protein C Receptor (EPCR/CD201), platelet/endothelial cell adhesion molecule 1 (PECAM-1/CD31), Thrombomodulin (CD141), and support adhesion of P. falciparum IEs.


Assuntos
Técnicas de Cultura de Células/métodos , Eritrócitos/citologia , Leucócitos Mononucleares/citologia , Malária Falciparum/sangue , Plasmodium falciparum/fisiologia , Animais , Antígenos de Superfície/metabolismo , Células CHO , Adesão Celular , Linhagem Celular , Criança , Pré-Escolar , Cricetulus , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/parasitologia , Receptor de Proteína C Endotelial/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/parasitologia , Malária Falciparum/parasitologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Trombomodulina
8.
Proc Natl Acad Sci U S A ; 115(24): E5536-E5545, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29844168

RESUMO

Immediate ß2-integrin activation upon T cell receptor stimulation is critical for effective interaction between T cells and their targets and may therefore be used for the rapid identification and isolation of functional T cells. We present a simple and sensitive flow cytometry-based assay to assess antigen-specific T cells using fluorescent intercellular adhesion molecule (ICAM)-1 multimers that specifically bind to activated ß2-integrins. The method is compatible with surface and intracellular staining; it is applicable for monitoring of a broad range of virus-, tumor-, and vaccine-specific CD8+ T cells, and for isolating viable antigen-reacting cells. ICAM-1 binding correlates with peptide-MHC multimer binding but, notably, it identifies the fraction of antigen-specific CD8+ T cells with immediate and high functional capability (i.e., expressing high levels of cytotoxic markers and cytokines). Compared with the currently available methods, staining of activated ß2-integrins presents the unique advantage of requiring activation times of only several minutes, therefore delivering functional information nearly reflecting the in vivo situation. Hence, the ICAM-1 assay is most suitable for rapid and precise monitoring of functional antigen-specific T cell responses, including for patient samples in a variety of clinical settings, as well as for the isolation of functional T cells for adoptive cell-transfer immunotherapies.


Assuntos
Antígenos/imunologia , Antígenos CD18/imunologia , Linfócitos T CD8-Positivos/imunologia , Adolescente , Transferência Adotiva/métodos , Adulto , Humanos , Imunoterapia Adotiva/métodos , Molécula 1 de Adesão Intercelular/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Adulto Jovem
9.
Cell Rep ; 22(11): 2951-2963, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29539423

RESUMO

Heterochromatin plays a central role in the process of immune evasion, pathogenesis, and transmission of the malaria parasite Plasmodium falciparum during blood stage infection. Here, we use ChIP sequencing to demonstrate that sporozoites from mosquito salivary glands expand heterochromatin at subtelomeric regions to silence blood-stage-specific genes. Our data also revealed that heterochromatin enrichment is predictive of the transcription status of clonally variant genes members that mediate cytoadhesion in blood stage parasites. A specific member (here called NF54varsporo) of the var gene family remains euchromatic, and the resultant PfEMP1 (NF54_SpzPfEMP1) is expressed at the sporozoite surface. NF54_SpzPfEMP1-specific antibodies efficiently block hepatocyte infection in a strain-specific manner. Furthermore, human volunteers immunized with infective sporozoites developed antibodies against NF54_SpzPfEMP1. Overall, we show that the epigenetic signature of var genes is reset in mosquito stages. Moreover, the identification of a strain-specific sporozoite PfEMP1 is highly relevant for vaccine design based on sporozoites.


Assuntos
Hepatócitos/imunologia , Proteínas de Protozoários/metabolismo , Esporozoítos/imunologia , Animais
10.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29426042

RESUMO

Cerebral malaria (CM) is a potentially deadly outcome of Plasmodium falciparum malaria that is precipitated by sequestration of infected erythrocytes (IEs) in the brain. The adhesion of IEs to brain endothelial cells is mediated by a subtype of parasite-encoded erythrocyte membrane protein 1 (PfEMP1) that facilitates dual binding to host intercellular adhesion molecule 1 (ICAM-1) and endothelial protein receptor C (EPCR). The PfEMP1 subtype is characterized by the presence of a particular motif (DBLß_motif) in the constituent ICAM-1-binding DBLß domain. The rate of natural acquisition of DBLß_motif-specific IgG antibodies and the ability to induce such antibodies by vaccination are unknown, and the aim of this study was to provide such data. We used an enzyme-linked immunosorbent assay (ELISA) to measure DBLß-specific IgG in plasma from Ghanaian children with malaria. The ability of human immune plasma and DBLß-specific rat antisera to inhibit the interaction between ICAM-1 and DBLß was assessed using ELISA and in vitro assays of IE adhesion under flow. The acquisition of DBLß_motif-specific IgG coincided with age-specific susceptibility to CM. Broadly cross-reactive antibodies inhibiting the interaction between ICAM-1 and DBLß_motif domains were detectable in immune plasma and in sera of rats immunized with specific DBLß_motif antigens. Importantly, antibodies against the DBLß_motif inhibited ICAM-1-specific in vitro adhesion of erythrocytes infected by four of five P. falciparum isolates from cerebral malaria patients. We conclude that natural exposure to P. falciparum as well as immunization with specific DBLß_motif antigens can induce cross-reactive antibodies that inhibit the interaction between ICAM-1 and a broad range of DBLß_motif domains. These findings raise hope that a vaccine designed specifically to prevent CM is feasible.


Assuntos
Imunoglobulina G/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Malária Cerebral/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Adolescente , Motivos de Aminoácidos , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Sítios de Ligação , Criança , Pré-Escolar , Reações Cruzadas/imunologia , Gana , Humanos , Imunoglobulina G/metabolismo , Lactente , Vacinas Antimaláricas/imunologia , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Ligação Proteica/imunologia , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/química , Tanzânia
11.
J Infect Dis ; 215(12): 1918-1925, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28863469

RESUMO

Background: Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates the binding and accumulation of infected erythrocytes (IE) to blood vessels and tissues. Specific interactions have been described between PfEMP1 and human endothelial proteins CD36, intercellular adhesion molecule-1 (ICAM-1), and endothelial protein C receptor (EPCR); however, cytoadhesion patterns typical for pediatric malaria syndromes and the associated PfEMP1 members are still undefined. Methods: In a cohort of 94 hospitalized children with malaria, we characterized the binding properties of IE collected on admission, and var gene transcription using quantitative polymerase chain reaction. Results: IE from patients with cerebral malaria were more likely to bind EPCR and ICAM-1 than IE from children with uncomplicated malaria (P = .007). The level of transcripts encoding CIDRα1.4 and CIDRα1.5 domain subclasses was higher in patients with severe disease (P < .05). IE populations exhibiting binding to all 3 receptors had higher levels of transcripts encoding PfEMP1 with CIDRα1.4 and Duffy binding-like (DBL)-ß3 domains than parasites, which only bound CD36. Conclusions: These results underpin the significance of EPCR binding in pediatric malaria patients that require hospital admission, and support the notion that complementary receptor interactions of EPCR binding PfEMP1with ICAM-1 amplifies development of severe malaria symptoms.


Assuntos
Antígenos CD/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Malária Cerebral/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Adesão Celular , Pré-Escolar , Células Endoteliais/metabolismo , Receptor de Proteína C Endotelial , Humanos , Lactente , Ligação Proteica , Transcrição Gênica
12.
Cell Host Microbe ; 21(3): 403-414, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28279348

RESUMO

Cerebral malaria is a deadly outcome of infection by Plasmodium falciparum, occurring when parasite-infected erythrocytes accumulate in the brain. These erythrocytes display parasite proteins of the PfEMP1 family that bind various endothelial receptors. Despite the importance of cerebral malaria, a binding phenotype linked to its symptoms has not been identified. Here, we used structural biology to determine how a group of PfEMP1 proteins interacts with intercellular adhesion molecule 1 (ICAM-1), allowing us to predict binders from a specific sequence motif alone. Analysis of multiple Plasmodium falciparum genomes showed that ICAM-1-binding PfEMP1s also interact with endothelial protein C receptor (EPCR), allowing infected erythrocytes to synergistically bind both receptors. Expression of these PfEMP1s, predicted to bind both ICAM-1 and EPCR, is associated with increased risk of developing cerebral malaria. This study therefore reveals an important PfEMP1-binding phenotype that could be targeted as part of a strategy to prevent cerebral malaria.


Assuntos
Adesão Celular , Malária Cerebral/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Fatores de Virulência/metabolismo , Antígenos CD/metabolismo , Biologia Computacional , Cristalografia por Raios X , Receptor de Proteína C Endotelial , Genoma de Protozoário , Molécula 1 de Adesão Intercelular/metabolismo , Plasmodium falciparum/fisiologia , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Receptores de Superfície Celular/metabolismo , Espalhamento a Baixo Ângulo , Análise de Sequência de DNA , Ressonância de Plasmônio de Superfície , Fatores de Virulência/química , Fatores de Virulência/genética
13.
Malar J ; 15(1): 575, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27899115

RESUMO

BACKGROUND: Malawi experienced prolonged use of sulfadoxine/pyrimethamine (SP) as the front-line anti-malarial drug, with early replacement of chloroquine and delayed introduction of artemisinin-based combination therapy. Extended use of SP, and its continued application in pregnancy is impacting the genomic variation of the Plasmodium falciparum population. METHODS: Whole genome sequence data of P. falciparum isolates covering 2 years of transmission within Malawi, alongside global datasets, were used. More than 745,000 SNPs were identified, and differences in allele frequencies between countries assessed, as well as genetic regions under positive selection determined. RESULTS: Positive selection signals were identified within dhps, dhfr and gch1, all components of the parasite folate pathway associated with SP resistance. Sitting predominantly on a dhfr triple mutation background, a novel copy number increase of ~twofold was identified in the gch1 promoter. This copy number was almost fixed (96.8% frequency) in Malawi samples, but found at less than 45% frequency in other African populations, and distinct from a whole gene duplication previously reported in Southeast Asian parasites. CONCLUSIONS: SP resistance selection pressures have been retained in the Malawian population, with known resistance dhfr mutations at fixation, complemented by a novel gch1 promoter duplication. The effects of the duplication on the fitness costs of SP variants and resistance need to be elucidated.


Assuntos
Antimaláricos/uso terapêutico , Variação Genética , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/classificação , Plasmodium falciparum/efeitos dos fármacos , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Pré-Escolar , Combinação de Medicamentos , Resistência a Medicamentos , Feminino , Frequência do Gene , Genoma de Protozoário , Genótipo , Humanos , Lactente , Malaui , Masculino , Mutação , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Seleção Genética , Análise de Sequência de DNA
15.
J Immunol ; 195(7): 3273-83, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26320251

RESUMO

The virulence of Plasmodium falciparum is linked to the ability of infected erythrocytes (IE) to adhere to the vascular endothelium, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). In this article, we report the functional characterization of an mAb that recognizes a panel of PfEMP1s and inhibits ICAM-1 binding. The 24E9 mouse mAb was raised against PFD1235w DBLß3_D4, a domain from the group A PfEMP1s associated with severe malaria. 24E9 recognizes native PfEMP1 expressed on the IE surface and shows cross-reactivity with and cross-inhibition of the ICAM-1 binding capacity of domain cassette 4 PfEMP1s. 24E9 Fab fragments bind DBLß3_D4 with nanomolar affinity and inhibit ICAM-1 binding of domain cassette 4-expressing IE. The antigenic regions targeted by 24E9 Fab were identified by hydrogen/deuterium exchange mass spectrometry and revealed three discrete peptides that are solvent protected in the complex. When mapped onto a homology model of DBLß3_D4, these cluster to a defined, surface-exposed region on the convex surface of DBLß3_D4. Mutagenesis confirmed that the site most strongly protected is necessary for 24E9 binding, which is consistent with a low-resolution structure of the DBLß3_D4::24E9 Fab complex derived from small-angle x-ray scattering. The convex surface of DBLß3_D4 has previously been shown to contain the ICAM-1 binding site of DBLß domains, suggesting that the mAb acts by occluding the ICAM-1 binding surface. Conserved epitopes, such as those targeted by 24E9, are promising candidates for the inclusion in a vaccine interfering with ICAM-1-specific adhesion of group A PfEMP1 expressed by P. falciparum IE during severe malaria.


Assuntos
Anticorpos Monoclonais/imunologia , Sítios de Ligação de Anticorpos/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Adesão Celular , Células Cultivadas , Endotélio Vascular/metabolismo , Endotélio Vascular/parasitologia , Epitopos/imunologia , Membrana Eritrocítica/imunologia , Eritrócitos/parasitologia , Hibridomas , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína
16.
Adv Parasitol ; 88: 51-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25911365

RESUMO

Plasmodium falciparum causes the most severe form of malaria and is responsible for essentially all malaria-related deaths. The accumulation in various tissues of erythrocytes infected by mature P. falciparum parasites can lead to circulatory disturbances and inflammation, and is thought to be a central element in the pathogenesis of the disease. It is mediated by the interaction of parasite ligands on the erythrocyte surface and a range of host receptor molecules in many organs and tissues. Among several proteins and protein families implicated in this process, the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of high-molecular weight and highly variable antigens appears to be the most prominent. In this chapter, we aim to provide a systematic overview of the current knowledge about these proteins, their structure, their function, how they are presented on the erythrocyte surface, and how the var genes encoding them are regulated. The role of PfEMP1 in the pathogenesis of malaria, PfEMP1-specific immune responses, and the prospect of PfEMP1-specific vaccination against malaria are also covered briefly.


Assuntos
Antígenos de Protozoários/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Eritrócitos/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Humanos , Malária Falciparum/fisiopatologia , Proteínas de Membrana/imunologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia
17.
PLoS One ; 9(10): e111518, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360558

RESUMO

The basis of severe malaria pathogenesis in part includes sequestration of Plasmodium falciparum-infected erythrocytes (IE) from the peripheral circulation. This phenomenon is mediated by the interaction between several endothelial receptors and one of the main parasite-derived variant antigens (PfEMP1) expressed on the surface of the infected erythrocyte membrane. One of the commonly used host receptors is ICAM-1, and it has been suggested that ICAM-1 has a role in cerebral malaria pathology, although the evidence to support this is not conclusive. The current study examined the cytoadherence patterns of lab-adapted patient isolates after selecting on ICAM-1. We investigated the binding phenotypes using variant ICAM-1 proteins including ICAM-1Ref, ICAM-1Kilifi, ICAM-1S22/A, ICAM-1L42/A and ICAM-1L44/A using static assays. The study also examined ICAM-1 blocking by four anti-ICAM-1 monoclonal antibodies (mAb) under static conditions. We also characterised the binding phenotypes using Human Dermal Microvascular Endothelial Cells (HDMEC) under flow conditions. The results show that different isolates have variant-specific binding phenotypes under both static and flow conditions, extending our previous observations that this variation might be due to variable contact residues on ICAM-1 being used by different parasite PfEMP1 variants.


Assuntos
Molécula 1 de Adesão Intercelular/metabolismo , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/metabolismo , Bioensaio , Adesão Celular , Derme/irrigação sanguínea , Derme/citologia , Células Endoteliais/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Ligação Proteica
18.
Nature ; 513(7518): 431-5, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25043062

RESUMO

Antigenic variation of the Plasmodium falciparum multicopy var gene family enables parasite evasion of immune destruction by host antibodies. Expression of a particular var subgroup, termed upsA, is linked to the obstruction of blood vessels in the brain and to the pathogenesis of human cerebral malaria. The mechanism determining upsA activation remains unknown. Here we show that an entirely new type of gene silencing mechanism involving an exonuclease-mediated degradation of nascent RNA controls the silencing of genes linked to severe malaria. We identify a novel chromatin-associated exoribonuclease, termed PfRNase II, that controls the silencing of upsA var genes by marking their transcription start site and intron-promoter regions leading to short-lived cryptic RNA. Parasites carrying a deficient PfRNase II gene produce full-length upsA var transcripts and intron-derived antisense long non-coding RNA. The presence of stable upsA var transcripts overcomes monoallelic expression, resulting in the simultaneous expression of both upsA and upsC type PfEMP1 proteins on the surface of individual infected red blood cells. In addition, we observe an inverse relationship between transcript levels of PfRNase II and upsA-type var genes in parasites from severe malaria patients, implying a crucial role of PfRNase II in severe malaria. Our results uncover a previously unknown type of post-transcriptional gene silencing mechanism in malaria parasites with repercussions for other organisms. Additionally, the identification of RNase II as a parasite protein controlling the expression of virulence genes involved in pathogenesis in patients with severe malaria may provide new strategies for reducing malaria mortality.


Assuntos
Exorribonucleases/metabolismo , Inativação Gênica , Genes de Protozoários/genética , Malária Cerebral/parasitologia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , RNA de Protozoário/metabolismo , Alelos , Variação Antigênica/genética , Cromatina/enzimologia , Regulação para Baixo/genética , Eritrócitos/parasitologia , Exorribonucleases/deficiência , Exorribonucleases/genética , Humanos , Íntrons/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade , Regiões Promotoras Genéticas/genética , Proteínas de Protozoários/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Sítio de Iniciação de Transcrição , Virulência/genética , Fatores de Virulência/genética
19.
J Infect Dis ; 210(12): 1991-2000, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24948693

RESUMO

BACKGROUND: Selection by host immunity and antimalarial drugs has driven extensive adaptive evolution in Plasmodium falciparum and continues to produce ever-changing landscapes of genetic variation. METHODS: We performed whole-genome sequencing of 69 P. falciparum isolates from Malawi and used population genetics approaches to investigate genetic diversity and population structure and identify loci under selection. RESULTS: High genetic diversity (π = 2.4 × 10(-4)), moderately high multiplicity of infection (2.7), and low linkage disequilibrium (500-bp) were observed in Chikhwawa District, Malawi, an area of high malaria transmission. Allele frequency-based tests provided evidence of recent population growth in Malawi and detected potential targets of host immunity and candidate vaccine antigens. Comparison of the sequence variation between isolates from Malawi and those from 5 geographically dispersed countries (Kenya, Burkina Faso, Mali, Cambodia, and Thailand) detected population genetic differences between Africa and Asia, within Southeast Asia, and within Africa. Haplotype-based tests of selection to sequence data from all 6 populations identified signals of directional selection at known drug-resistance loci, including pfcrt, pfdhps, pfmdr1, and pfgch1. CONCLUSIONS: The sequence variations observed at drug-resistance loci reflect differences in each country's historical use of antimalarial drugs and may be useful in formulating local malaria treatment guidelines.


Assuntos
Adaptação Biológica , Evolução Molecular , Genoma de Protozoário , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Antimaláricos/uso terapêutico , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malaui , Masculino , Epidemiologia Molecular , Plasmodium falciparum/isolamento & purificação , Seleção Genética , Análise de Sequência de DNA
20.
PLoS One ; 8(7): e69999, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936131

RESUMO

Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes. Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLß, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM­1-binding phenotype has been suggested to be involved in the development of cerebral malaria. However, more studies identifying cross-reactive antibody and ICAM-1-binding epitopes and the establishment of a clinical link between DBLß expression and e.g. cerebral malaria are needed before the DBLß domains can be put forward as vaccine candidates and go into clinical trials. Such studies require availability of functional recombinant ICAM-1 in large quantities. In this study, we compared recombinant ICAM-1 expressed in HEK293 and COS-7 cells with mouse myeloma NS0 ICAM-1 purchased from a commercial vendor in terms of protein purity, yield, fold, ability to bind DBLß, and relative cost. We present a HEK293 cell-based, high-yield expression and purification scheme for producing inexpensive, functional ICAM­1. ICAM-1 expressed in HEK293 is applicable to malaria research and can also be useful in other research fields.


Assuntos
Molécula 1 de Adesão Intercelular/isolamento & purificação , Molécula 1 de Adesão Intercelular/metabolismo , Plasmodium falciparum/química , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Humanos , Molécula 1 de Adesão Intercelular/genética , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...